NOTES ON CRITICAL ALMOST HERMITIAN STRUCTURES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Hermitian structures on tangent bundles

In this article, we consider the almost Hermitian structure on TM induced by a pair of a metric and an affine connection on M . We find the conditions under which TM admits almost Kähler structures, Kähler structures and Einstein metrics, respectively. Moreover, we give two examples of Kähler-Einstein structures on TM . 2000 Mathematics Subject Classification: 53C55, 53C15, 53C25.

متن کامل

Almost power-Hermitian rings

In this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.

متن کامل

Almost Hermitian Structures and Quaternionic Geometries

Gray & Hervella gave a classification of almost Hermitian structures (g, I) into 16 classes. We systematically study the interaction between these classes when one has an almost hyper-Hermitian structure (g, I, J,K). In general dimension we find at most 167 different almost hyper-Hermitian structures. In particular, we obtain a number of relations that give hyperKäher or locally conformal hyper...

متن کامل

Notes on Differential Topology and Almost Complex Structures

1 Linear Algebra: Complex Structure Operators Definition 1.1. Given a real vector space V , a real linear map J : V → V such that J • J = −Id V is called a " complex structure operator, " or more briefly a CSO.

متن کامل

Notes on the Hermitian Dual

1 Basics Let H be a complex torus, with real points H(R), h, h0, θ, h ∗ = HomC(h,C) as usual. View X∗(H) as 1 2πi ker(exp) ⊂ h. Write X → X for complex conjugation with respect to h0, and X → X̃ for the one with respect to X∗(H)⊗ R. Note that θX = θX and θ̃X = θX̃, and also (1) X = −θ̃X = −θX̃ (X ∈ h). This follows from the fact that X∗(H) ⊂ it0⊕a0 where t0 = h θ 0 and a0 = h −θ 0 . Write θ for minu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2010

ISSN: 1015-8634

DOI: 10.4134/bkms.2010.47.1.167